The Crystal and Molecular Structure of 3,4-Dimethyl-2,5-diphenyl-3,4-dihydro-3a-thia-1,3,4,6-tetraazapentalene

Fujiko Iwasaki* and Kin-ya Akiba†

Department of Materials Science, The University of Electro-Communications, Chofu-shi, Tokyo 182

†Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730

(Received March 5, 1984)

The crystal structure of 3,4-dimethyl-2,5-diphenyl-3,4-dihydro-3a-thia-1,3,4,6-tetraazapentalene has been determined by the X-ray method. The crystals are orthorhombic, space group Pbcn, a=14.533(4), b=9.285(3), c=11.305(2) Å, V=1525.4(6) ų, Z=4, $D_x=1.343$ Mg m⁻³. The final R value is 0.060 for 1107 reflections. The molecule has an exact C_2 symmetry, with the central S-C bond coincident with the 2-fold axis of the crystal symmetry. The length of 1.904 Å of the two equivalent S-N bonds indicates that the molecule is a tetraaza analogue of the thiathiophthenes. The length of this S-N bond is 9% longer than the N-S single bond and significantly less than the sum of the van der Waals radii.

In the course of the 1,3-dipolar addition to 4,5-dihydro-1,2,4-thiadiazole a bond switch has taken place at the π-hypervalent sulfur atom,^{1,2)} An intermediate state of the reaction should be of a thiathiophthene type; in fact, a molecule of such a type has been found in the crystalline state.³⁾ An addition of N-methylbenzimidoyl chloride to 5-amino-1,2,3,4-thiatriazole gave 2-methyl-3-phenyl-5-imino-2,5-dihydro-1,2,4-thiadiazole hydrochloride. Further addition gave the molecule I.⁴⁾ For such symmetric substituents it is interesting to investigate whether the molecule of I has a symmetric or unsymmetric structure. An X-ray structure analysis was undertaken to elucidate the structure of I.

Experimental

Crystal Data: C₁₇H₁₆N₄S, Mw=308.40, Orthorhombic, Pbcn, a=14.533(4), b=9.285(3), c=11.305(2) Å, V=1525.4(6) ų, Z=4, D_x =1.343 Mgm⁻³.

Colorless crystals were grown from benzene-hexane solution. Intensities were collected on a Rigaku automatic diffractometer with graphite-monochromated Mo $K\alpha$ radiation, using the crystal with approximate dimensions $0.15\times0.25\times0.35$ mm. Reflections in the range $2\theta\le55^\circ$ were measured by the $\omega=2\theta$ scan technique with a scan width of $1.2^\circ+0.5^\circ$ tan θ and a scanning rate of 4° min⁻¹ in 2θ . At both ends of the scan range 10 s background counts were taken for each reflection. 1107 Reflections had $|F_o|\ge3\sigma(F_o)$ and were considered observed. No absorption corrections were applied.

The structure was solved by the direct method with the program MULTAN 78.9 Non-hydrogen atoms were refined by the block-diagonal least-squares with anisotropic temperature factors to an R value of 0.09. A difference map showed the all hydrogen atoms. A possibility of a disordered structure

was clearly eliminated by the examination of the D-map and anisotropic temperature factors. Further refinement with anisotropic temperature factors for non-hydrogen atoms and isotropic ones for H gave the final R value of 0.060. The quantity minimized was $\sum w(|F_o| - k^{-1}|F_e|)^2$. w=0.3 if $|F_o| < 4.0$, w=1.0 if $4.0 \le |F_o| \le 16.0$ and $w=(16.0/|F_o|)^2$ if $|F_o| > 16.0$. Atomic scattering factors were taken from "International Tables for X-ray Crystallography". 6) All computations were performed on a HITAC M180 Computer of the Data Processing Center of the University of Electro-Communications with the programs UNICS III," MULTAN 78,5) and ORTEP II.8) The final atomic parameters are given in Table 1.9)

Discussion

Figure 1 shows the atomic numbering of the crystalchemical unit. Bond lengths and angles are listed in Table 2. The molecule has an exact C_2 symmetry, with

Table 1. Atomic coordinates ($\times 10^4$, for H $\times 10^3$) and isotropic temperature factors For non-H atoms $B=B_{\rm eq}=4/3\sum_{\rm i}\sum_{\rm j}\beta_{\rm ij}a_{\rm i}\cdot a_{\rm j}$.

		_		
Atom	x	y	z	$B_{ m eq}/{ m \AA^2}$
S (6)	5000	4845(1)	2500	2.8
C (3)	5000	2945(6)	2500	2.5
N(1)	5787(2)	4586 (4)	3830(3)	2.9
C (2)	5854(3)	3216(4)	4117(3)	2.7
N (3)	5433(2)	2270(3)	3383(3)	2.7
C (11)	6157(3)	5834(5)	4454 (4)	3.4
C (21)	6288(3)	2623(5)	5200(3)	2.9
C (22)	5859(3)	1479(5)	5760(4)	3.4
C (23)	6215(4)	899(5)	6787 (4)	4.0
C (24)	7014(4)	1435(6)	7247 (4)	4.4
C (25)	7454 (4)	2561 (6)	6695(4)	4.3
C (26)	7099(3)	3159(5)	5674(4)	3.5
H(11)	676(3)	601 (5)	420(4)	3.2(9)
H (12)	609(3)	575 (5)	518(4)	2.8(9)
H (13)	580(3)	669(6)	420(4)	4.2(11)
H (22)	534(4)	95(7)	548 (5)	4.6(12)
H(23)	589(3)	22(6)	718(4)	3.8(10)
H (24)	728(4)	111(6)	796 (5)	4.8(12)
H (25)	796 (3)	293 (5)	694(4)	3.1(10)
H (26)	744 (4)	390(7)	533 (5)	5.8(14)

Fig. 1. Molecular structure with atomic numbering of the crystal-chemical unit. Twofold axis lies on the C(3)-S(6) bond. Each non-H atom is represented as a thermal ellipsoid with a 50% probability.

TABLE 2. BOND LENGTH AND ANGLE WITH THEIR

Distance	l/Å	Distance	l/Å
S(6)-C(3)	1.764(5)	C(24)-C(25)	1.375(8)
S(6)-N(1)	1.904(4)	C(25)-C(26)	1.380(8)
N(1)-C(2)	1.316(5)	C(11)-H(11)	0.94(5)
C(2)-N(3)	1.354(5)	C(11)-H(12)	0.83(4)
C(3)-N(3)	1.336(6)	C(11)-H(13)	0.99(5)
N(1)-C(11)	1.460(6)	C(22)-H(22)	0.96(6)
C(2)-C(21)	1.483(6)	C(23)-H(23)	0.91(5)
C(21)-C(22)	1.385(6)	C(24)-H(24)	0.94(6)
C(21)-C(26)	1.388(6)	C(25)-H(25)	0.86(5)
C(22)-C(23)	1.380(7)	C(26)-H(26)	0.94(6)
C(23)-C(24)	1.367(8)		
Angle	$oldsymbol{\phi}/^{oldsymbol{\circ}}$	Angle	$oldsymbol{\phi}/^\circ$
C(3)S(6)N(1)	82.7(2)	C(21)C(26)C(25)	119.8(5)
$N(1)S(6)N(1^{i})$	165.5(2)	N(1)C(11)H(11)	110(3)
S(6)N(1)C(2)	111.2(3)	N(1)C(11)H(12)	111(3)
S(6)N(1)C(11)	120.2(3)	N(1)C(11)H(13)	108(3)
C(2)N(1)C(11)	128.4(4)	H(11)C(11)H(12)	115(4)
N(1)C(2)N(3)	116.3(4)	H(11)C(11)H(13)	105(4)
N(1)C(2)C(21)	126.4(4)	H(12)C(11)H(13)	108(4)
N(3)C(2)C(21)	117.2(4)	C(21)C(22)H(22)	127(4)
C(3)N(3)C(2)	111.5(4)	C(23)C(22)H(22)	112(4)
S(6)C(3)N(3)	117.9(4)	C(22)C(23)H(23)	119(3)
$N(3)C(3)N(3^{i})$	124.1(5)	C(24)C(23)H(23)	121(3)
C(2)C(21)C(22)	118.1(4)	C(23)C(24)H(24)	124(3)
C(2)C(21)C(26)	123.2(4)	C(25)C(24)H(24)	116(3)
C(22)C(21)C(26)	118.7(4)	C(24)C(25)H(25)	124(3)
$\mathbf{C}(21)\mathbf{C}(22)\mathbf{C}(23)$	121.1(4)	C(26)C(25)H(25)	116(3)
C(22)C(23)C(24)	119.8(5)	C(21)C(26)H(26)	124(4)
C(23)C(24)C(25)	119.9(5)	C(25)C(26)H(26)	117(4)
C(24)C(25)C(26)	120.8(5)		
Superscri	pt (i) $1-x$,	y, 1/2-z	

the S(6)–C(3) bond coincident with the crystallographic 2-fold axis along the b axis. The S(6)–N(1) distance is 1.904 Å, 9% longer than the normal S–N single bond (1.74 Å).¹⁰⁾ Thus the molecule is found to be 3a-thia-1,3,4,6-tetraazapentalene, the tetraaza analogue of thia-thiophthene (1,6,6a-trithiapentalene, II).¹¹⁾ The corresponding lengths in III³⁾ are 1.983 and 1.833 Å, and in IV¹²⁾ 1.901 and 1.948 Å respectively. The average lengthening of the S–S bonds in the thiathiophthenes is

12%. The S-X (X=S, N, and O) bonds in the thiathiophthenes and in the related substances are weaker than other bonds in the molecule, and therefore are more affected by the substituents and/or by the crystalline field. The present molecule is the first example with the exactly equal S-N bonds among the N-S-N analogues of 1,6,6a-trithiapentalene. The CNDO/2 calculation based on the determined structure shows the net charges on the S and N atoms being +0.208 and -0.258 respectively. This suggests that there is an electrostatically attractive interaction between S and N. The existence of the molecule with the symmetrical N-S-N bond in the stable state is very interesting from the point of view of the 1,3-dipolar addition, where the bond-switch takes place at the π -hypervalent sulfur. Bürgi¹³⁾ pointed out that the correlation between the non-bonded and bonded S-S interactions of the thiathiophthenes corresponds to the reaction path of the linear exchange reac-

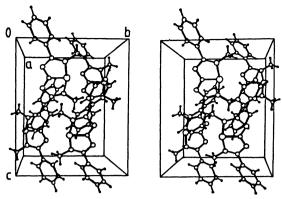


Fig. 2. Stereoscopic view of the crystal structure.

tion. The molecule of the symmetrical type should correspond to the intermediate model of the reaction such as 1,3-dipole additions.

Although the C(3)-S(6) length is longer than the corresponding ones in **III** (1.717 Å) and **IV** (1.742 Å), the longer values are also found in V (1.784 Å)14) and in VI $(1.789 \text{ Å}).^{15}$ The S(6a)-C(3a) lengths in the 1,6,6atrithiapentalenes are remarkably constant within the range of 1.74-1.76 Å. The difference between the lengths of the S(6a)-C(3a) bonds in I, V, VI, and those of 1,6,6a-trithiapentalenes seems due to the presence of the two divalent N atoms in the rings of I, V, and VI. But for the dioxa derivative (VII) the short S-C bond (1.719 Å) was reported. 16) The length of the cyclic C(2)-N(3)bond is slightly longer than those in V(1.325 Å) and the length of the aromatic C-N bond in pyridine (1.340 Å), while the N(3)-C(3) distance is shorter than that of V (1.344 Å). In the 1,6,6a-trithiapentalenes the sum of the outer C(2)-C(3) and C(4)-C(5) lengths is always found to be smaller than the sum of the inner C(3a)-C(3) and C(3a)-C(4) lengths. This is the typical feature showing the resemblance between 1,6,6a-trithiapentalenes and naphthalene.¹¹⁾ But in the case of 3.4-diaza derivatives such as I, V, IV, and VII no significant difference between the outer and inner N-C bonds is observed. The N(1)-C(2) bond is shorter than that of IV (1.388 Å) and the aromatic C-N bond. The C(2)-C(21) length is close to the average value of the corresponding C-C lengths in V. The N(1)-C(11) length is slightly shorter than the C-N single bond (1.47 Å). Such short C-N bonds are also found in IV (1.441 and 1.454 Å).

The equation for the least squares plane through the five membered ring is

-0.8152X + 0.0375Y + 0.5780Z = -4.163 (Å)

where X, Y, and Z in Å unit referred to the a, b, and c axes respectively. The deviations of S(6), N(1), C(2), N(3), C(3), C(11) and C(21) are 0.033, -0.039, 0.024, 0.012, -0.030, -0.028 and 0.198 Å respectively. The phenyl ring is planar with deviations within 0.007 Å. The dihedral angle between the planes of the central ring and the phenyl ring is 40.0°. The corresponding angles are 2.0 and 7.0° in V, 45.1 and 3.3° in VIII, 17 and nearly 0° in VII.

Figure 2 shows the stereoscopic view of the molecular packing. There are no significant intermolecular contacts shorter than the sum of the van der Waals radii.

References

- 1) K. Akiba, S. Arai, T. Tsuchiya, Y. Tamamoto, and F. Iwasaki, *Angew. Chem.*, **91**, 176 (1979); *ibid.*, (Int. ed. Engl.) **18**, 166 (1979).
- 2) K. Akiba, S. Arai, and F. Iwasaki, Tetrahedron Lett., 1978, 4117.
- 3) F. Iwasaki and K. Akiba, Acta Crystallogr., Sect. B, 37, 180 (1981).
- 4) Y. Yamamoto and K. Akiba, Heterocycles, 13, 297 (1979).
- 5) P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data. Univs. of York and Louvain-la-Nerve, Belgium. (1978).
- 6) "International Tables for X-ray Crystallography," Birmingham, Kynoch Press (1974), Vol. IV.
- 7) T. Sakurai and K. Kobayashi, Rikagaku Kenkyusho Hokoku, 55, 69 (1979).
- 8) C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee (1971).
- 9) The tables for the anisotropic temperature factors for non-hydrogen atoms and the F_o-F_c list are deposited as Document No. 8439 at the Office of the Chemical Society of Japan.
- 10) L. Pauling, "The Nature of Chemical Bond," 3rd ed. Cornell University Press, Ithaca (1960).
- 11) L. K. Hansen and A. Hordvik, Acta Chem. Scand., 27, 411 (1973).
- 12) A. Hordvik and K. Julshamn, Acta Chem. Scand., 26, 343 (1972).
- 13) H. B. Burgi, Angew. Chem. 87, 461 (1975); ibid. (Int. ed. Engl.) 14, 460 (1975).
- 14) A. Hordvik and L. M. Milje, Acta Chem. Scand., 27, 510 (1973).
- 15) A. Hordvik and P. Oftedal, Acta Chem. Scand., Ser. A, 35, 663 (1981).
- 16) M. Dalseng, L. K. Hansen and A. Hordvik, *Acta Chem. Scand.*, *Ser. A*, **35**, 645 (1981).
- 17) A. Hordvik, Acta Chem. Scand., 25, 1583 (1971).